Abstract
Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein‐based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, ame-logenin recombinamers, and amelogenin‐derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio‐inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.
Original language | English |
---|---|
Article number | 12343 |
Journal | International Journal of Molecular Sciences |
Volume | 22 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2021 Nov 1 |
Bibliographical note
Funding Information:Funding: This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN‐2017‐06885 to K.M.M.C. and RGPIN‐2019‐07070 to B.G.). Ad‐ ditional support was received from the Bertha Rosenstadt Endowment Fund. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Subject classification (UKÄ)
- Cell and Molecular Biology
Free keywords
- Amelogenin
- Amelotin hydroxyapatite
- Biomimetics
- Biomineralization
- Bio‐inspired materials
- Enamel