Uniform spectral radius and compact Gelfand transform

Alexandru Aleman, Anders Dahlner

Research output: Contribution to journalArticlepeer-review

3 Citations (SciVal)


We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x bar right arrow (x) over cap are: (i) Is K-nu = sup{parallel to(e - x)(-1)parallel to(p) : x is an element of A, parallel to x parallel to(p) <= 1, max (x) over cap <= nu} bounded, where nu is an element of (0, 1)? (ii) For which delta is an element of (0, 1) is C-delta = sup{parallel to x(-1)parallel to(p) : x is an element of A, parallel to x parallel to(p) <= 1, min (x) over cap >= delta} bounded? Both questions are related to a "uniform spectral radius" of the algebra, r(infinity)(A), introduced by Bjork. Question (i) has an affirmative answer if and only if r(infinity)(A) < 1, and this result is extended to more general nonlinear extremal problems of this type. Question (ii) is more difficult, but it can also be related to the uniform spectral radius. For algebras with compact Gelfand transform we prove that the answer is "yes" for all delta is an element of (0, 1) if and only if r(infinity)(A) = 0. Finally, we specialize to semisimple Beurling type algebras l(w)(p)(D), where 0 < p < 1 and D = N or D = Z. We show that the number r(infinity)(l(w)(p)(D)) can be effectively computed in terms of the underlying weight. In particular, this solves questions (i) and (ii) for many of these algebras. We also construct weights such that the corresponding Beurling algebra has a compact Gelfand transform, but the uniform spectral radius equals an arbitrary given number in (0, 1].
Original languageEnglish
Pages (from-to)25-46
JournalStudia Mathematica
Issue number1
Publication statusPublished - 2006

Subject classification (UKÄ)

  • Mathematics


  • quasi-Banach algebras
  • property
  • bounded inverse
  • uniform spectral radius
  • norm controlled inversion
  • invisible spectrum


Dive into the research topics of 'Uniform spectral radius and compact Gelfand transform'. Together they form a unique fingerprint.

Cite this