Research output per year
Research output per year
Xiaoyu Liu, Yajie Yan, Alireza Honarfar, Yao Yao, Kaibo Zheng, Ziqi Liang
Research output: Contribution to journal › Article › peer-review
Nonfullerene acceptors (NFAs)-based organic solar cells (OSCs) have recently drawn considerable research interests; however, their excitonic dynamics seems quite different than that of fullerene acceptors-based devices and remains to be largely explored. A random terpolymer of PBBF11 to pair with a paradigm NFA of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC) such that both complementary optical absorption and very small offsets of both highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels are acquired is designed and synthesized. Despite the small energy offsets, efficient electron/hole transfer between PBBF11 and ITIC is both clearly observed from steady-state photoluminescence and transient absorption spectra and also supported by the measured low exciton binding energy in ITIC. Consequently, the PBBF11:ITIC-based OSCs afford an encouraging power conversion efficiency (PCE) of 10.02%. Although the good miscibility of PBBF11 and ITIC induces a homogenous blend film morphology, it causes severe charge recombination. The fullerene acceptor of PC 71 BM with varying loading ratios is therefore added to modulate film morphology to effectively reduce the charge recombination. As a result, the optimal OSCs based on PBBF11:ITIC:PC 71 BM yield a better PCE of 11.4% without any additive or annealing treatment.
Original language | English |
---|---|
Article number | 1802103 |
Journal | Advanced Science |
Volume | 6 |
Issue number | 8 |
Early online date | 2019 Feb 19 |
DOIs | |
Publication status | Published - 2019 |
Research output: Thesis › Doctoral Thesis (compilation)
Hankin, L. (Manager)
NanoLund: Centre for NanoscienceInfrastructure