Ventricular longitudinal shortening is an independent predictor of death in heart failure patients with reduced ejection fraction

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)

Abstract

Reduced ventricular longitudinal shortening measured by atrioventricular plane displacement (AVPD) and global longitudinal strain (GLS) are prognostic markers in heart disease. This study aims to determine if AVPD and GLS with cardiovascular magnetic resonance (CMR) are independent predictors of cardiovascular (CV) and all-cause death also in heart failure with reduced ejection fraction (HFrEF). Patients (n = 287) were examined with CMR and AVPD, GLS, ventricular volumes, myocardial fibrosis/scar were measured. Follow-up was 5 years with cause of death retrieved from a national registry. Forty CV and 60 all-cause deaths occurred and CV non-survivors had a lower AVPD (6.4 ± 2.0 vs 8.0 ± 2.4 mm, p < 0.001) and worse GLS (− 6.1 ± 2.2 vs − 7.7 ± 3.1%, p = 0.001). Kaplan–Meier analyses displayed increased survival for patients in the highest AVPD- and GLS-tertiles vs. the lowest tertiles (AVPD: p = 0.001, GLS: p = 0.013). AVPD and GLS showed in univariate analysis a hazard ratio (HR) of 1.30 (per-mm-decrease) and 1.19 (per-%-decrease) for CV death. Mean AVPD and GLS were independent predictors of all-cause death (HR = 1.24 per-mm-decrease and 1.15 per-%-decrease), but only AVPD showed incremental value over age, sex, body-mass-index, EF, etiology and fibrosis/scar for CV death (HR = 1.33 per-mm-decrease, p < 0.001). Ventricular longitudinal shortening remains independently prognostic for death in HFrEF even after adjusting for well-known clinical risk factors.

Original languageEnglish
Article number20280
JournalScientific Reports
Volume11
DOIs
Publication statusPublished - 2021

Subject classification (UKÄ)

  • Cardiac and Cardiovascular Systems

Fingerprint

Dive into the research topics of 'Ventricular longitudinal shortening is an independent predictor of death in heart failure patients with reduced ejection fraction'. Together they form a unique fingerprint.

Cite this