TY - JOUR
T1 - WNT5A Signaling Contributes to A beta-Induced Neuroinflammation and Neurotoxicity
AU - Li, Bei
AU - Zhong, Ling
AU - Yang, Xiangling
AU - Andersson, Tommy
AU - Huang, Min
AU - Tang, Shao-Jun
PY - 2011
Y1 - 2011
N2 - Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in the AD mouse brain, and that beta-amyloid peptide (A beta), a major constituent of amyloid plaques, stimulated Wnt5a and Fz5 expression in primary cortical cultures; these observations indicate that Wnt5a signaling could be aberrantly activated during AD pathogenesis. In support of such a possibility, we observed that inhibition of Wnt5a signaling attenuated while activation of Wnt5a signaling enhanced A beta-evoked neurotoxicity, suggesting a role of Wnt5a signaling in AD-related neurodegeneration. Furthermore, we also demonstrated that A beta-induced neurotoxicity depends on inflammatory processes, and that activation of Wnt5a signaling elicited the expression of proinflammatory cytokines IL-1 beta and TNF-alpha whereas inhibition of Wnt5a signaling attenuated the A beta-induced expression of the cytokines in cortical cultures. Our findings collectively suggest that aberrantly up-regulated Wnt5a signaling is a crucial pathological step that contributes to AD-related neurodegeneration by regulating neuroinflammation.
AB - Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in the AD mouse brain, and that beta-amyloid peptide (A beta), a major constituent of amyloid plaques, stimulated Wnt5a and Fz5 expression in primary cortical cultures; these observations indicate that Wnt5a signaling could be aberrantly activated during AD pathogenesis. In support of such a possibility, we observed that inhibition of Wnt5a signaling attenuated while activation of Wnt5a signaling enhanced A beta-evoked neurotoxicity, suggesting a role of Wnt5a signaling in AD-related neurodegeneration. Furthermore, we also demonstrated that A beta-induced neurotoxicity depends on inflammatory processes, and that activation of Wnt5a signaling elicited the expression of proinflammatory cytokines IL-1 beta and TNF-alpha whereas inhibition of Wnt5a signaling attenuated the A beta-induced expression of the cytokines in cortical cultures. Our findings collectively suggest that aberrantly up-regulated Wnt5a signaling is a crucial pathological step that contributes to AD-related neurodegeneration by regulating neuroinflammation.
U2 - 10.1371/journal.pone.0022920
DO - 10.1371/journal.pone.0022920
M3 - Article
C2 - 21857966
SN - 1932-6203
VL - 6
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e22920
ER -