2 breaking effects in 2-loop RG evolution of 2HDM

Research output: Contribution to journalArticle


We investigate the effects of a ℤ 2 symmetry in the CP-conserving Two-Higgs-Doublet-Model (2HDM); which is often imposed to prevent Flavor-Changing-Neutral-Currents (FCNCs) at tree-level. Specifically, we analyze how a breaking of the ℤ 2 symmetry spreads during renormalization group evolution; employing general 2-loop renormalization group equations that we have derived. Evolving the model from the electroweak to the Planck scale, we find that while the case of an exact ℤ 2 symmetric 2HDM is very constrained, a soft breaking of the ℤ 2 symmetry extends the valid parameter space regions. The effects of a hard ℤ 2 breaking in the scalar sector as well as the stability of the flavor alignment ansatz are also investigated. We find that while a hard breaking of the ℤ 2 symmetry in the potential is problematic, since it speeds up the growth of quartic couplings, the generated FCNCs are heavily suppressed. Conversely, we also find that hard ℤ 2 breaking in the Yukawa sector at most gives moderate ℤ 2 breaking in the potential; whereas the FCNCs can become quite sizable far away from the ℤ 2 symmetric regions.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Subatomic Physics


  • Beyond Standard Model, Higgs Physics
Original languageEnglish
Article number152
JournalJournal of High Energy Physics
Issue number2
Publication statusPublished - 2019 Feb 22
Publication categoryResearch

Related research output

Oredsson, J., 2019, Department of Astronomy and Theoretical Physics, Lund University. 226 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)