A carbohydrate binding module as a diversity-carrying scaffold

Research output: Contribution to journalArticle

Abstract

The growing field of biotechnology is in constant need of binding proteins with novel properties. Not just binding specificities and affinities but also structural stability and productivity are important characteristics for the purpose of large-scale applications. In order to find such molecules, libraries are created by diversifying naturally occurring binding proteins, which in those cases serve as scaffolds. In this study, we investigated the use of a thermostable carbohydrate binding module, CBM4-2, from a xylanase found in Rhodothermus marinus, as a diversity-carrying scaffold. A combinatorial library was created by introducing restricted variation at 12 positions in the carbohydrate binding site of the CBM4-2. Despite the small size of the library (1.6x10(6) clones), variants specific towards different carbohydrate polymers (birchwood xylan, Avicel and ivory nut mannan) as well as a glycoprotein (human IgG4) were successfully selected for, using the phage display method. Investigated clones showed a high productivity (on average 69 mg of purified protein/l shake flask culture) when produced in Escherichia coli and they were all stable molecules displaying a high melting transition temperature (75.7 +/- 5.3degreesC). All our results demonstrate that the CBM4-2 molecule is a suitable scaffold for creating variants useful in different biotechnological applications.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Immunology in the medical area
  • Industrial Biotechnology
Original languageEnglish
Pages (from-to)213-221
JournalProtein Engineering Design & Selection
Volume17
Issue number3
Publication statusPublished - 2004
Publication categoryResearch
Peer-reviewedYes

Related projects

Mats Ohlin, Lavinia Cicortas Gunnarsson, Laura von Schantz, Olle Holst, E N Karlsson & Derek Logan

Swedish Research Council

2001/01/01 → …

Project: Research

View all (1)