A CGTase with high coupling activity using γ-cyclodextrin isolated from a novel strain clustering under the genus Carboxydocella.

Research output: Contribution to journalArticle


Cyclodextrin glucanotransferases (CGTases; EC have mainly been characterized for their ability to produce cyclodextrins (CDs) from starch in an intramolecular transglycosylation reaction (cyclization). However, this class of enzymes can also catalyze intermolecular transglycosylation via disproportionation or coupling reactions onto a wide array of acceptors and could therefore be valuable as a tool for glycosylation. In this paper, we report the gene isolation, via the CODEHOP-strategy, expression and characterization of a novel CGTase (CspCGT13) from a Carboxydocella sp. This enzyme is the first glycoside hydrolase isolated from the genus, indicating starch degradation via cyclodextrin production in the Carboxydocella strain. The fundamental reactivities of this novel CGTase are characterized and compared to two commercial CGTases, assayed under identical condition, in order to facilitate interpretation of the results. The comparison showed that the enzyme, CspCGT13, displayed high coupling activity using γ-CD as donor, despite preferentially forming α and β-CD in the cyclization reaction using wheat starch as substrate. Comparison of subsite conservation within previously characterized CGTases showed significant sequence variation in subsite -3 and -7, which may be important for the coupling activity.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology
Original languageEnglish
Pages (from-to)514-523
Issue number5
Publication statusPublished - 2015
Publication categoryResearch

Related research output

Zubaida Gulshan Kazi, 2020, Division of Biotechnology, Lund University.

Research output: ThesisDoctoral Thesis (compilation)

Pontus Lundemo, 2015, 75 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (2)