A Hardy inequality in twisted waveguides
Research output: Contribution to journal › Article
Abstract
We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.
Details
Authors | |
---|---|
Organisations | |
Research areas and keywords | Subject classification (UKÄ) – MANDATORY
|
Original language | English |
---|---|
Pages (from-to) | 245-264 |
Journal | Archive for Rational Mechanics and Analysis |
Volume | 188 |
Issue number | 2 |
Publication status | Published - 2008 |
Publication category | Research |
Peer-reviewed | Yes |