A new route for the synthesis of methacrylic acid from 2-methyl-1,3-propanediol by integrating biotransformation and catalytic dehydration

Research output: Contribution to journalArticle


Methacrylic acid was produced in high yield by an integrated process involving bioconversion of 2-methyl-1,3-propanediol (2M1,3PD) to 3-hydroxy-2-methylpropionic acid (3H2MPA) via 3-hydroxy-2-methylpropanal (3H2MPAL), and catalytic dehydration of the resulting acid. Whole cells of Gluconobacter oxydans grown on glycerol-based culture medium were used as the catalyst for oxidative biotransformation that involved alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes in the organism. The effect of several reaction parameters on bioconversion in a batch system was investigated to obtain 95–100% conversion of 2M1,3PD with over 95% selectivity to 3H2MPA. The optimum conditions for bioconversion were pH 6–7.5, 25–30 °C, 5–10 g substrate and 2.6 g cell (dry weight) per liter. Higher substrate concentrations led to enzyme inhibition and incomplete conversion. Loss of catalytic activity was noted during recycling of the cells. The cells were active for a longer period when used for biotransformation of 20 g per L of substrate in a continuous reactor with cell retention. The product of the bio-oxidation, 3H2MPA, was converted using titanium dioxide at 210 °C to give methacrylic acid (MA) with a yield of over 85%. The integrated process provides a new environmentally benign route for production of methacrylic acid from 2-methyl-1,3-propanediol, an industrial by-product, compared with the conventional acetone-cyanohydrin (ACH) process.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Industrial Biotechnology


  • ACH process, Gluconobacter oxydans, alcohol dehydrogenase, aldehyde dehydrogenase, titanium dioxide
Original languageEnglish
Pages (from-to)1942-1948
JournalGreen Chemistry
Issue number7
Publication statusPublished - 2012
Publication categoryResearch

Total downloads

No data available

Related research output

Tarek Dishisha, 2013, 154 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)