A new tyrosyl radical on Phe(208) as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H - Combined X-ray diffraction and EPR/ENDOR studies

Research output: Contribution to journalArticle

Abstract

The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, (FeFeR)-Fe-III-R-III . Here we report a detailed characterization of center H, using H-1/H-2-N-14/N-15- and Fe-57-ENDOR in comparison with the (FeFeIV)-Fe-III intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe(208) is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe(208) is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.

Details

Authors
  • M Kolberg
  • Derek Logan
  • G Bleifuss
  • S Potsch
  • B-M Sjoberg
  • A Gräslund
  • W Lubitz
  • G Lassmann
  • F Lendzian
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biological Sciences
Original languageEnglish
Pages (from-to)11233-11246
JournalJournal of Biological Chemistry
Volume280
Issue number12
Publication statusPublished - 2005
Publication categoryResearch
Peer-reviewedYes