A new tyrosyl radical on Phe(208) as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H - Combined X-ray diffraction and EPR/ENDOR studies

Research output: Contribution to journalArticle

Bibtex

@article{0d4933ec52de4b07a8032cf827cb153b,
title = "A new tyrosyl radical on Phe(208) as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H - Combined X-ray diffraction and EPR/ENDOR studies",
abstract = "The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, (FeFeR)-Fe-III-R-III . Here we report a detailed characterization of center H, using H-1/H-2-N-14/N-15- and Fe-57-ENDOR in comparison with the (FeFeIV)-Fe-III intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe(208) is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe(208) is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.",
author = "M Kolberg and Derek Logan and G Bleifuss and S Potsch and B-M Sjoberg and A Gr{\"a}slund and W Lubitz and G Lassmann and F Lendzian",
year = "2005",
doi = "10.1074/jbc.M414634200",
language = "English",
volume = "280",
pages = "11233--11246",
journal = "Journal of Biological Chemistry",
issn = "1083-351X",
publisher = "ASBMB",
number = "12",

}