Absence of warmth permits epigenetic memory of winter in Arabidopsis

Research output: Contribution to journalArticle


Plants integrate widely fluctuating temperatures to monitor seasonal progression. Here, we investigate the temperature signals in field conditions that result in vernalisation, the mechanism by which flowering is aligned with spring. We find that multiple, distinct aspects of the temperature profile contribute to vernalisation. In autumn, transient cold temperatures promote transcriptional shutdown of Arabidopsis FLOWERING LOCUS C (FLC), independently of factors conferring epigenetic memory. As winter continues, expression of VERNALIZATION INSENSITIVE3 (VIN3), a factor needed for epigenetic silencing, is upregulated by at least two independent thermosensory processes. One integrates long-term cold temperatures, while the other requires the absence of daily temperatures above 15 °C. The lack of spikes of high temperature, not just prolonged cold, is thus the major driver for vernalisation. Monitoring of peak daily temperature is an effective mechanism to judge seasonal progression, but is likely to have deleterious consequences for vernalisation as the climate becomes more variable.


  • Jo Hepworth
  • Rea L. Antoniou-Kourounioti
  • Rebecca H. Bloomer
  • Catja Selga
  • Kristina Berggren
  • Deborah Cox
  • Barley R. Collier Harris
  • Judith A. Irwin
  • Svante Holm
  • Torbjörn Säll
  • Martin Howard
  • Caroline Dean
External organisations
  • John Innes Centre
  • Mid Sweden University
  • Lund University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Botany
  • Genetics
Original languageEnglish
Article number639
JournalNature Communications
Issue number1
Publication statusPublished - 2018 Dec 1
Publication categoryResearch