Adaptive Time-Stepping and Computational Stability
Research output: Contribution to journal › Article
Abstract
We investigate the effects of adaptive time-stepping and other algorithmic strategies on the computational stability of ODE codes. We show that carefully designed adaptive algorithms have a most significant impact on computational stability and reliability. A series of computational experiments with the standard implementation of Dassl and a modified version, including stepsize control based on digital filters, is used to demonstrate that relatively small algorithmic changes are able to extract a vastly better computational stability at no extra expense. The inherent performance and stability of Dassl are therefore much greater than the standard implementation seems to suggest.
Details
Authors | |
---|---|
Organisations | |
Research areas and keywords | Subject classification (UKÄ) – MANDATORY
Keywords
|
Original language | English |
---|---|
Pages (from-to) | 225-243 |
Journal | Journal of Computational and Applied Mathematics |
Volume | 185 |
Publication status | Published - 2006 |
Publication category | Research |
Peer-reviewed | Yes |
Bibliographic note
The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Numerical Analysis (011015004)