Addition of n-Alcohols Induces a Variety of Liquid-Crystalline Structures in Surfactant-Rich Cores of Dispersed Block Copolymer/Surfactant Nanoparticles

Research output: Contribution to journalArticle

Abstract

Poly(acrylamide)-b-complex salts made from a symmetric poly(acrylate-b-acrylamide) block copolymer, where the acrylate charges are neutralized by cationic surfactant counterions, form kinetically stable aqueous dispersions of hierarchical aggregates with a liquid-crystalline complex salt core and a diffuse hydrated shell. By the addition of suitable amounts of long-chain alcohols, such as octanol or decanol, the structure of the internal phase can be varied, producing micellar cubic, hexagonal, lamellar, or reverse hexagonal liquid-crystalline phases. In addition, a disordered reverse micellar phase forms at the highest content of octanol. These core structures are the same as those previously obtained for macroscopic homopolymer poly(acrylate) complex salt/water/n-alcohol systems at the corresponding compositions. The poly(acrylamide)-b-complex salt dispersions are kinetically stable for several weeks, with their colloidal properties and internal structures remaining unchanged. The methodology described here establishes an easy and robust protocol for the preparation of colloidal nanoparticles with variable but controlled internal structures.

Details

Authors
Organisations
External organisations
  • University of Campinas
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Polymer Chemistry
Original languageEnglish
Pages (from-to)1104-1113
Number of pages10
JournalACS Omega
Volume1
Issue number6
Publication statusPublished - 2016 Dec 31
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

doi: 10.1021/acsomega.6b00267