Altered Expression of Aquaporin 1 and 5 in the Choroid Plexus following Preterm Intraventricular Hemorrhage.

Research output: Contribution to journalArticle

Abstract

Intraventricular hemorrhage (IVH) with posthemorrhagic ventricular dilatation (PHVD) is a common cause of hydrocephalus in infants. Dysregulation of cerebrospinal fluid (CSF) production by the choroid plexus may contribute to the development of PHVD. The aquaporins (AQPs), transmural water transporting proteins, are believed to contribute to CSF production. The aim of the study was to characterize the expression and localization of AQP1, 4 and 5 in the choroid plexus following preterm IVH. Using a preterm rabbit pup model, the mRNA expression, protein level and localization of AQP1, 4 and 5 were investigated in the choroid plexus at 24 and 72 h following IVH with PHVD. Further, AQP1, 4 and 5 expression were characterized in primary human plexus epithelial cells exposed to CSF from preterm human infants with IVH and to hemoglobin metabolites. IVH with PHVD in the immature brain caused a downregulation of AQP1 mRNA, the key AQP in CSF production, but an upregulation of AQP1 protein level with apical epithelial cell localization. Notably, AQP5 was expressed in the choroid plexus with upregulated mRNA expression and protein levels during PHVD with apical epithelial cell localization. Analysis of human choroid plexus epithelial cells in vitro, following exposure to posthemorrhagic CSF and to hemin, displayed results concordant with those observed in vivo, i.e. downregulation of AQP1 mRNA and upregulation of AQP5 mRNA expression. AQP4 was neither detectable in vivo nor in vitro. The changes observed in AQP1 and AQP5 expression in the choroid plexus suggest an adaptive response following IVH with possible functional implications for the development of PHVD. © 2014 S. Karger AG, Basel.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Neurosciences
Original languageEnglish
Pages (from-to)542-551
JournalDevelopmental Neuroscience
Volume36
Issue number6
Publication statusPublished - 2014
Publication categoryResearch
Peer-reviewedYes