Analysis of subsurface microstructure and residual stresses in machined Inconel 718 with PCBN and Al2O3-SiCw tools

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceeding

Abstract

Subsurface microstructural alterations and residual stresses caused by machining significantly affect component lifetime and performance by influencing fatigue, creep, and stress corrosion cracking resistance. Assessing the surface quality of a machined part by characterizing subsurface microstructural alterations and residual stresses is essential for ensuring part performance and lifetime in aero-engines and power generators. This comparative study characterizes and analyzes subsurface microstructural alterations and residual stresses in Inconel 718 subjected to high-speed machining with PCBN and whisker-reinforced ceramic cutting tools. Effects of cutting tool materials and microgeometry on subsurface deformation, microstructural alterations, and residual stresses were investigated. Surface and subsurface regions of machined specimens were investigated using X-ray diffraction, electron channeling contrast imaging, and electron back-scatter diffraction to characterize microstructural alterations and measure deformation intensity and depth. (C) 2014 The Authors. Published by Elsevier B.V.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Ceramics

Keywords

  • Surface integrity, Inconel 718, residual stresses, microstructure, PCBN, Ceramics
Original languageEnglish
Title of host publicationProcedia CIRP
PublisherElsevier
Pages150-155
Volume13
Publication statusPublished - 2014
Publication categoryResearch
Peer-reviewedYes
Event2nd CIRP Conference on Surface Integrity (CSI) - Nottingham, England
Duration: 2014 May 282014 May 30

Publication series

Name
Volume13
ISSN (Print)2212-8271

Conference

Conference2nd CIRP Conference on Surface Integrity (CSI)
Period2014/05/282014/05/30