Bioaccumulation and trophodynamics of the antidepressants sertraline and fluoxetine in laboratory-constructed, 3-level aquatic food chains

Research output: Contribution to journalArticle

Abstract

Although reports of pharmaceutical bioconcentration in aquatic organisms are increasing, less is known about trophic transfer in aquatic food webs. The bioaccumulation and trophodynamics of sertraline and fluoxetine, 2 selective serotonin reuptake inhibitors (SSRIs) frequently detected in aquatic environments, were tested by exposing constructed aquatic food chains to SSRIs under controlled laboratory conditions. Both of these ionizable, weak base pharmaceuticals showed lower bioaccumulation factors (BAFs) with increasing trophic level (i.e., no biomagnifications) in 2 3-level food chains (Acer platanoides, fed to Asellus aquaticus, in turn fed to Notonecta glauca or Pungitius pungitius). Mean sertraline BAFs in A. platanoides, A. aquaticus, N. glauca, and P. pungitus were 2200 L/kg, 360 L/kg, 26 L/kg, and 49 L/kg, respectively, and mean fluoxetine BAFs 1300 L/kg, 110 L/kg, 11 L/kg, and 41 L/kg, respectively. The weak influence of diet was further demonstrated by measured BAFs being equal to or lower than measured bioconcentration factors (BCFs). Organism lipid content was not positively correlated with BAFs, suggesting that other processes are driving interspecific differences in SSRI bioaccumulation. The empirically derived parameter values were introduced into a proposed bioaccumulation model, and a poor correlation was found between modeled and empirical BAFs (predicted r2 = –0.63). In conclusion, the apparent lack of biomagnification of these ionizable pharmaceuticals suggests that environmental concern should not necessarily focus only on higher trophic levels, but also on species showing high BCFs at any trophic level. Environ Toxicol Chem 2017;36:1029–1037.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology
  • Ecology

Keywords

  • Aquatic food chain, Bioaccumulation, Bioconcentration, Biomagnification, Ionizable pharmaceuticals, Selective serotonin reuptake inhibitor
Original languageEnglish
Pages (from-to)1029-1037
Number of pages9
JournalEnvironmental Toxicology and Chemistry
Volume36
Issue number4
Publication statusPublished - 2017 Apr 1
Publication categoryResearch
Peer-reviewedYes

Related research output

Marja L. Boström, 2019 Nov 3, Lund: Media-Tryck, Lund University, Sweden. 135 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)