Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning-a comparison between process models of varying complexity

Research output: Contribution to journalArticle


Biogenic volatile organic compounds (BVOCs) emitted by vegetation play an important role for aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study, the formation of SOA has been modeled along an air-mass trajectory over northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model simulations along an air-mass trajectory allows us to compare, under atmospheric relevant conditions, different model parameterizations and their effect on SOA formation. The result of the study shows that the modeled mass concentration of SOA is highly dependent on the organic oxidation scheme used to predict oxidation products. A near-explicit treatment of organic gas-phase oxidation (Master Chemical Mechanism version 3.2) was compared to oxidation schemes that use the volatility basis set (VBS) approach. The resulting SOA mass modeled with different VBS schemes varies by a factor of about 7 depending on how the first-generation oxidation products are parameterized and how they subsequently age (e.g., how fast the gas-phase oxidation products react with the OH radical, how they respond to temperature changes, and if they are allowed to fragment during the aging process). Since the VBS approach is frequently used in regional and global climate models due to its relatively simple treatment of the oxidation products compared to near-explicit oxidation schemes, a better understanding of the above-mentioned processes is needed. Based on the results of this study, fragmentation should be included in order to obtain a realistic SOA formation. Furthermore, compared to the most commonly used VBS schemes, the near-explicit method produces less-but more oxidized-SOA.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Subatomic Physics
  • Production Engineering, Human Work Science and Ergonomics
  • Earth and Related Environmental Sciences
Original languageEnglish
Pages (from-to)11853-11869
JournalAtmospheric Chemistry and Physics
Issue number21
Publication statusPublished - 2014
Publication categoryResearch

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Nuclear Physics (Faculty of Technology) (011013007), Centre for Environmental and Climate Research (CEC) (011085000), Ergonomics and Aerosol Technology (011025002)