Bis- and tris(pyridyl)amine-oxidovanadium complexes: characteristics and insulin-mimetic potential.

Research output: Contribution to journalArticle

Abstract

Two novel vanadium complexes, [V(IV)O(bp-O)(HSO4)] (1) and [V(IV)O(bp-OH)Cl2] x CH3OH (2 x CH3OH), where bp-OH is 2-{[bis(pyrid-2-yl)methyl]amine}methylphenol, were prepared and structurally characterised. EPR spectra of methanol solutions of 2 suggest exchange of Cl- for CH3OH and partial conversion to [VO(bp-OH)(CH3OH)3]2+. Speciation studies on the VO2+-bpOH system in a water/dmso mixture (4:1 v/v) revealed [VO(bp-O)(H2O)n]+ as the dominating species in the pH range 2-7. The insulin-mimetic properties of 1 and 2, [V(IV)O(SO4)tpa] (3), [V(IV)O(pic-trpMe)2] (5) and the new mixed-ligand complexes [V(V)O(pic-trpH)tpa]Cl2 (4Cl2) and [V(V)O(pic-OEt)tpa]Cl2 (6Cl2), tpa = tris(pyrid-2-yl)methylamine, picH-trpH = 2-carboxypyridine-5-(L-tryptophan)carboxamide (picH-trpMe is the respective tryptophanmethyl ester), pic-OEt = 5-carboethoxypyridine-2-carboxylic acid, were evaluated with rat adipocytes, employing two lipolysis assays (release of glycerol and free fatty acids (FFA)), respectively and a lipogenesis assay (incorporation of glucose into lipids). The IC50 values for the inhibition of lipolysis in the FFA assay vary between 0.41 (+/-0.03) (5) and 21.2 (+/-0.6) mM (2), as compared to 0.81 (+/-0.2) mM for VOSO4.

Details

Authors
  • Jessica Nilsson
  • Eva Degerman
  • Matti Haukka
  • George C Lisensky
  • Eugenio Garribba
  • Yutaka Yoshikawa
  • Hiromu Sakurai
  • Eva A Enyedy
  • Tamás Kiss
  • Hossein Esbak
  • Dieter Rehder
  • Ebbe Nordlander
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Endocrinology and Diabetes
Original languageEnglish
Pages (from-to)7902-7911
JournalDalton Transactions
Issue number38
Publication statusPublished - 2009
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Insulin Signal Transduction (013212014), Chemical Physics (S) (011001060)