Carotenoid S(1) state in a recombinant light-harvesting complex of Photosystem II.

Research output: Contribution to journalArticle


The carotenoid species lutein, violaxanthin, and zeaxanthin are crucial in the xanthophyll-dependent nonphotochemical quenching occurring in photosynthetic systems of higher plants, since they are involved in dissipation of excess energy and thus protect the photosynthetic machinery from irreversible inhibition. Nonetheless, important properties of the xanthophyll cycle carotenoids, such as the energy of their S(1) electronic states, are difficult to study and were only recently determined in organic solvents [Polívka, T. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 4914. Frank, H. A. (2000) Biochemistry 39, 2831]. In the present study, we have determined the S(1) energies of three carotenoid species, violaxanthin, lutein, and zeaxanthin, in their LHCII (peripheral light-harvesting complex of photosystem II) protein environment by constructing recombinant Lhcb1 (Lhc = light-harvesting complex) proteins containing single carotenoid species. Within experimental error the S(1) energy is the same for all three carotenoids in the monomeric LHCII, 13,900 +/- 300 cm(-1) (720 +/- 15 nm), thus well below the Q(y)() transitions of chlorophylls. In addition, we have found that, although the S(1) lifetimes of violaxanthin, lutein, and zeaxanthin differ substantially in solution, when incorporated into the LHCII protein, their S(1) states have in fact the same lifetime of about 11 ps. Despite the similar spectroscopic properties of the carotenoids bound to the LHCII, we observed a maximal fluorescence quenching when zeaxanthin was present in the LHCII complex. On the basis of these observations, we suggest that, rather than different photochemical properties of individual carotenoid species, changes in the protein conformation induced by binding of carotenoids with distinct molecular structures are involved in the quenching phenomena associated with Lhc proteins.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology


  • Kinetics, Light, Lutein : chemistry, Photosynthetic Reaction Center Plant, Recombinant Proteins : chemistry : metabolism, Spectrometry Fluorescence, Support Non-U.S. Gov't, Spectrophotometry, beta Carotene : analogs & derivatives : chemistry, Time Factors, Electrophysiology, Carotenoids : chemistry
Original languageEnglish
Pages (from-to)439-450
Issue number2
Publication statusPublished - 2002
Publication categoryResearch

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Chemical Physics (S) (011001060)