Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain

Research output: Contribution to journalArticle


Calretinin, a neuronal protein with well-defined calcium-binding properties, has a poorly defined function. The pH dependent properties of calretinin (CR), the N-terminal (CR I-II), and C-terminal (CR III-VI) domains were investigated. A drop in pH within the intracellular range (from pH 7.5 to pH 6.5) leads to an increased hydrophobicity of calcium-bound CR and its domains as reported by fluorescence spectroscopy with the hydrophobic probe 2-(p-toluidino)-6-naphthalenesulfonic acid (TNS). The TNS data for the N- and C-terminal domains of CR are additive, providing further support for their independence within the full-length protein. Our work concentrated on CR I-II, which was found to have hydrophobic properties similar to calmodulin at lower pH. The elution of CR I-II from a phenyl-Sepharose column was consistent with the TNS data. The pH-dependent structural changes were further localized to residues 13-28 and 44-51 using nuclear magnetic resonance spectroscopy chemical shift analysis, and there appear to be no large changes in secondary structure. Protonation of His12 and/or His27 side chains, coupled with calcium chelation, appears to lead to the organization of a hydrophobic pocket in the N-terminal domain. CR may sense and respond to calcium, proton, and other signals, contributing to conflicting data on the proteins role as a calcium sensor or calcium buffer.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Pages (from-to)1879-1887
JournalProtein Science
Issue number7
Publication statusPublished - 2005
Publication categoryResearch