Chronic high glucose and pyruvate levels differentially affect mitochondrial bioenergetics and fuel-stimulated insulin secretion from clonal INS-1 832/13 cells.

Research output: Contribution to journalArticle

Abstract

Glucotoxicity in pancreatic β-cells is a well-established pathogenetic process in Type 2 Diabetes. It has been suggested that metabolism-derived reactive oxygen species perturb the β-cell transcriptional machi-nery. Less is known about altered mitochondrial function in this condition. We used INS-1 832/13 cells cultured for 48 h in 2.8 mM glucose (low-G), 16.7 mM glucose (high-G) or 2.8 mM glucose plus 13.7 mM pyruvate (high-P) to identify metabolic perturbations. High-G cells showed decreased responsiveness, relative to low-G cells, with respect to mitochondrial membrane hyperpolarization, plasma membrane depolarization and insulin secretion, when stimulated acutely with 16.7 mM glucose or 10 mM pyruvate. In contrast, high-P cells were functionally unimpaired, eliminating chronic provision of saturating mitochondrial substrate as a cause of glucotoxicity. Although cellular insulin content was depleted in high-G cells, relative to low-G and high-P cells, cellular functions were largely recovered following a further 24 h culture in low-G medium. After 2 h at 2.8 mM glucose, high-G cells did not retain increased levels of glycolytic or TCA-cycle intermediates, but nevertheless displayed increased glycolysis, increased respiration and an increased mitochondrial proton leak relative to low-G and high-P cells. This notwithstanding, titration of low-G cells with low protonophore concen-trations, monitoring respiration and insulin secretion in parallel, showed that the perturbed insulin secretion of high-G cells could not be accounted for by increased proton leak. The present study supports the idea that glucose-induced disturbances of stimulus-secretion coupling by extra-mitochondrial metabolism upstream of pyruvate, rather than exhaustion from metabolic overload, underlie glucotoxicity in insulin-producing cells.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Endocrinology and Diabetes
Original languageEnglish
Pages (from-to)3786-3798
JournalJournal of Biological Chemistry
Volume289
Issue number6
Publication statusPublished - 2014
Publication categoryResearch
Peer-reviewedYes