Confined polyelectrolytes: The complexity of a simple system.

Research output: Contribution to journalArticle

Abstract

The interaction between polyelectrolytes and counterions in confined situations and the mutual relationship between chain conformation and ion condensation is an important issue in several areas. In the biological field, it assumes particular relevance in the understanding of the packaging of nucleic acids, which is crucial in the design of gene delivery systems. In this work, a simple coarse-grained model is used to assess the cooperativity between conformational change and ion condensation in spherically confined backbones, with capsides permeable to the counterions. It is seen that the variation on the degree of condensation depends on counterion valence. For monovalent counterions, the degree of condensation passes through a minimum before increasing as the confining space diminishes. In contrast, for trivalent ions, the overall tendency is to decrease the degree of condensation as the confinement space also decreases. Most of the particles reside close to the spherical wall, even for systems in which the density is higher closer to the cavity center. This effect is more pronounced, when monovalent counterions are present. Additionally, there are clear variations in the charge along the concentric layers that cannot be totally ascribed to polyelectrolyte behavior, as shown by decoupling the chain into monomers. If both chain and counterions are confined, the formation of a counterion rich region immediately before the wall is observed. Spool and doughnut-like structures are formed for stiff chains, within a nontrivial evolution with increasing confinement. © 2015 Wiley Periodicals, Inc.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Pages (from-to)1579-1586
JournalJournal of Computational Chemistry
Volume36
Issue number21
Publication statusPublished - 2015
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)