Convolutional neural network-based cow interaction watchdog

Research output: Contribution to journalArticle

Abstract

In the field of applied animal behaviour, video recordings of a scene of interest are often made and then evaluated by experts. This evaluation is based on different criteria (number of animals present, an occurrence of certain interactions, the proximity between animals and so forth) and aims to filter out video sequences that contain irrelevant information. However, such task requires a tremendous amount of time and resources, making manual approach ineffective. To reduce the amount of time the experts spend on watching the uninteresting video, this study introduces an automated watchdog system that can discard some of the recorded video material based on user-defined criteria. A pilot study on cows was made where a convolutional neural network detector was used to detect and count the number of cows in the scene as well as include distances and interactions between cows as filtering criteria. This approach removed 38% (50% for additional filter parameters) of the recordings while only losing 1% (4%) of the potentially interesting video frames.

Details

Authors
Organisations
External organisations
  • Swedish University of Agricultural Sciences
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Computer Vision and Robotics (Autonomous Systems)
Original languageEnglish
Pages (from-to)171-177
Number of pages7
JournalIET Computer Vision
Volume12
Issue number2
Publication statusPublished - 2018 Mar 1
Publication categoryResearch
Peer-reviewedYes