Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

Research output: Contribution to journalArticle


By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Industrial Biotechnology
Original languageEnglish
Pages (from-to)58-66
JournalJournal of Biotechnology
Publication statusPublished - 2015
Publication categoryResearch