Designing proteins to crystallize through beta-strand pairing

Research output: Contribution to journalArticle

Abstract

Inherent difficulties in growing protein crystals are major concerns within structural biology and particularly in structural proteomics. Here, we describe a novel approach of engineering target proteins by surface mutagenesis to increase the odds of crystallizing the molecules. To this end, we have exploited our recent triad-hypothesis using proteins with crystallographically defined beta-structures as the principal models. Crystal packing analyses of 182 protein structures belonging to 21 different superfamilies implied that the propensities to crystallize could be engineered into target proteins by replacing short segments, 5-6 residues, of their beta-strands with 'cassettes' of suitable packing motifs. These packing motifs will generate specific crystal packing interactions that promote crystallization. Key features of the primary and tertiary structures of such packing motifs have been identified for immunoglobulins. Further, packing motifs have been engineered successfully into six model antibodies without disturbing their capabilities to be produced, their immunoreactivity and their overall structure. Preliminary crystallization analyses have also been performed. Taken together, the procedures outline a rational protocol for crystallizing proteins by surface mutagenesis. The importance of these findings is discussed in relation to the crystallization of proteins in general.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Immunology in the medical area

Keywords

  • structural proteomics, protein crystallization, crystal engineering, directed crystallization, triad-hypothesis
Original languageEnglish
Pages (from-to)255-264
JournalProtein Engineering
Volume16
Issue number4
Publication statusPublished - 2003
Publication categoryResearch
Peer-reviewedYes