Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations

Research output: Contribution to journalArticle

Abstract

Purpose: To test various ways of combining creatinine and cystatin C in equations to predict glomerular filtration rate (GFR). Material and methods: Performance of the following expressions to predict GFR was compared with measured GFR (iohexol clearance, mL/min/1.73 m(2)) in 857 patients: (i) Lund-Malmo creatinine equation, (ii) Grubb cystatin C equation, (iii) arithmetic mean of (1) and (2), (iv) geometric mean of (1) and (2), (v) linear regression on (1) and (2), (vi) regression on (1) and cystatin C, and (vii) regression on creatinine, cystatin C, age and gender. Results: For the entire cohort median percent error (bias) was <5% for all expressions, though all expressions tended to underestimate (<8.3 to <15.8%) GFR at levels <90 mL/min/1.73 m(2). The five expressions combining creatinine and cystatin C significantly improved correlation and accuracy (p < 0.001) within 15 and 30% of measured GFR compared with the equations based on the separate analytes and with no significant difference between the five expressions. In a subgroup of patients with neurological disease and muscle atrophy the cystatin C equation performed better than the expressions combining creatinine and cystatin C. Conclusion: Simply calculating the arithmetic mean of predicted GFR based on separate creatinine and cystatin C equations performs equally well as more complex equations. Reporting GFR based on separate creatinine and cystatin C equations, and their arithmetic mean also has the definite advantage that the physician can choose the estimated GFR, most appropriate depending on the clinical setting and patient characteristics.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Pharmacology and Toxicology
  • Other Clinical Medicine
  • Environmental Health and Occupational Health
  • Medicinal Chemistry

Keywords

  • glomerular filtration rate, Kidney disease, kidney function tests, renal insufficiency
Original languageEnglish
Pages (from-to)619-627
JournalScandinavian Journal of Clinical & Laboratory Investigation
Volume69
Issue number5
Publication statusPublished - 2009
Publication categoryResearch
Peer-reviewedYes