Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation

AU - Kilsgård, Ola

AU - Karlsson, Christofer

AU - Malmström, Erik

AU - Malmström, Johan

PY - 2016

Y1 - 2016

N2 - . Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although . S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type . S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the . S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a . S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis.

AB - . Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although . S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type . S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the . S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a . S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis.

KW - Host adaptation

KW - Pathogenesis

KW - Proteomics

KW - Streptococcus pyogenes

UR - http://www.scopus.com/inward/record.url?scp=84979519861&partnerID=8YFLogxK

U2 - 10.1016/j.ijmm.2016.06.007

DO - 10.1016/j.ijmm.2016.06.007

M3 - Article

VL - 306

SP - 504

EP - 516

JO - International Journal of Medical Microbiology

T2 - International Journal of Medical Microbiology

JF - International Journal of Medical Microbiology

SN - 1618-0607

IS - 7

ER -