Direct reprogramming into interneurons: potential for brain repair

Research output: Contribution to journalReview article


The brain tissue has only a limited capacity for generating new neurons. Therefore, to treat neurological diseases, there is a need of other cell sources for brain repair. Different sources of cells have been subject of intense research over the years, including cells from primary tissue, stem cell-derived cells and reprogrammed cells. As an alternative, direct reprogramming of resident brain cells into neurons is a recent approach that could provide an attractive method for treating brain injuries or diseases as it uses the patient’s own cells for generating novel neurons inside the brain. In vivo reprogramming is still in its early stages but holds great promise as an option for cell therapy. To date, both inhibitory and excitatory neurons have been obtained via in vivo reprogramming, but the precise phenotype or functionality of these cells has not been analysed in detail in most of the studies. Recent data shows that in vivo reprogrammed neurons are able to functionally mature and integrate into the existing brain circuitry, and compose interneuron phenotypes that seem to correlate to their endogenous counterparts. Interneurons are of particular importance as they are essential in physiological brain function and when disturbed lead to several neurological disorders. In this review, we describe a comprehensive overview of the existing studies involving brain repair, including in vivo reprogramming, with a focus on interneurons, along with an overview on current efforts to generate interneurons for cell therapy for a number of neurological diseases.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Neurosciences
  • Cell Biology


  • Cell therapy, Dopamine, ESCs, iNs, Intracerebral injections, iPSC, Mice, Neurodegenerative diseases, Neuronal conversion, Neuropsychiatric disorders, Parvalbumin, Transdifferentiation, Viral injections
Original languageEnglish
Pages (from-to)3953-3967
JournalCellular and Molecular Life Sciences
Issue number20
Early online date2019
Publication statusPublished - 2019
Publication categoryResearch