Disturbed cervical proprioception affects perception of spatial orientation while in motion

Research output: Contribution to journalArticle


The proprioceptive, visual and vestibular sensory systems interact to maintain dynamic stability during movement. The relative importance and interplay between these sensory systems is still not fully understood. Increased knowledge about spatial perception and postural orientation would provide better understanding of balance disorders, and their rehabilitation. Displacement of the body in space was recorded in 16 healthy subjects performing a sequence of stepping-in-place tests without any visual or auditory cues. Spatial displacement and orientation in space were determined by calculating two parameters, “Moved distance (sagittal + lateral displacement)” and “Rotation”. During the stepping-in-place tests vibration were applied in a randomized order on four different cervical muscles, and the effects were compared between muscles and to a non-vibration baseline condition. During the tests a forward displacement (“Moved distance”) was found to be the normal behavior, with various degrees of longitudinal rotation (“Rotation”). The moved distance was significantly larger when the vibration was applied on the dorsal muscles (916 mm) relative to on ventral muscles (715 mm) (p = 0.003) and the rate of displacement was significantly larger for dorsal muscles (36.5 mm/s) relative to ventral (28.7 mm/s) vs (p = 0.002). When vibration was applied on the left-sided muscles, 16° rotation to the right was induced (p = 0.005), whereas no significant rotation direction was induced with right-sided vibration (3°). The rate of rotation was significantly larger for vibration applied on ventral muscles (0.44°/s) relative to on dorsal (0.33°/s) (p = 0.019). The results highlight the influence of cervical proprioception on the internal spatial orientation, and subsequent for postural control.


External organisations
  • Skåne University Hospital
  • Abels Rehab
  • Medpro Clinic Rehab AB
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Neurology
  • Other Health Sciences


  • Orientation, Position sense, Proprioception, Spatial perception
Original languageEnglish
Pages (from-to)2755-2766
Number of pages12
JournalExperimental Brain Research
Issue number9
Publication statusPublished - 2017 Sep 1
Publication categoryResearch