Do oaks have different strategies for uptake of N, K and P depending on soil depth?

Research output: Contribution to journalArticle

Abstract

The uptake of nutrients from deep soil layers has been shown to be important for the long-term nutrient sustainability of forest soils. When modelling nutrient uptake in forest ecosystems, the nutrient uptake capacity of trees is usually defined by the root distribution. However, this leads to the assumption that roots at different soil depths have the same capacity to take up nutrients. To investigate if roots located at different soil depths differ in their nutrient uptake capacity, here defined as the nutrient uptake rate under standardized conditions, a bioassay was performed on excised roots (< 1 mm) of eight oak trees (Quercus robur L.). The results showed that the root uptake rate of Rb-86(+) (used as an analogue for K+ stop) declined with increasing soil depth, and the same trend was found for NH4+. The root uptake rate of H2PO4-, on the other hand, did not decrease with soil depth. These different physiological responses in relation to soil depth indicate differences in the oak roots, and suggest that fine roots in shallow soil layers may be specialized in taking up nutrients such as K+ and NH4+ which have a high availability in these layers, while oak roots in deep soil layers are specialized in taking up other resources, such as P, which may have a high availability in deep soil layers. Regardless of the cause of the difference in uptake trends for the various nutrients, these differences have consequences for the modelling of the soil nutrient pool beneath oak trees and raise the question of whether roots can be treated uniformly, as has previously been done in forest ecosystem models.

Details

Authors
  • Hans Göransson
  • Ann-Mari Fransson
  • Ulrika Jönsson Belyazid
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Ecology

Keywords

  • N-15, root bioassay, nutrient uptake, Quercus robur, soil depth, (RB)-R-86, P-32
Original languageEnglish
Pages (from-to)119-125
JournalPlant and Soil
Volume297
Issue number1-2
Publication statusPublished - 2007
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Plant Ecology and Systematics (Closed 2011) (011004000)