Doping evaluation of InP nanowires for tandem junction solar cells

Research output: Contribution to journalArticle

Abstract

In order to push the development of nanowire-based solar cells further using optimized nanowire diameter and pitch, a doping evaluation of the nanowire geometry is necessary. We report on a doping evaluation of n-type InP nanowires with diameters optimized for light absorption, grown by the use of metal-organic vapor phase epitaxy in particle-assisted growth mode using tetraethyltin (TESn) as the dopant precursor. The charge carrier concentration was evaluated using four-probe resistivity measurements and spatially resolved Hall measurements. In order to reach the highest possible nanowire doping level, we set the TESn molar fraction at a high constant value throughout growth and varied the trimethylindium (TMIn) molar fraction for different runs. Analysis shows that the charge carrier concentration in nanowires grown with the highest TMIn molar fraction (not leading to kinking nanowires) results in a low carrier concentration of approximately 10(16) cm(-3). By decreasing the molar fraction of TMIn, effectively increasing the IV/III ratio, the carrier concentration increases up to a level of about 10(19) cm(-3), where it seems to saturate. Axial carrier concentration gradients along the nanowires are found, which can be correlated to a combination of changes in the nanowire growth rate, measured in situ by optical reflectometry, and polytypism of the nanowires observed in transmission electron microscopy.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Nano Technology
  • Energy Engineering

Keywords

  • Hall effect, nanowires, resistivity, doping, carrier concentration, InP
Original languageEnglish
Article number065706
JournalNanotechnology
Volume27
Issue number6
Publication statusPublished - 2016
Publication categoryResearch
Peer-reviewedYes