ECG-Derived Respiratory Rate in Atrial Fibrillation
Research output: Contribution to journal › Article
Abstract
Objective: The present study addresses the problem of estimating the respiratory rate from the mor- phological ECG variations in the presence of atrial fibrilla- tory waves (f-waves). The significance of performing f-wave suppression before respiratory rate estimation is investi- gated. Methods: The performance of a novel approach to ECG-derived respiration, named “slope range” (SR) and de- signed particularly for operation in atrial fibrillation (AF), is compared to that of two well-known methods based on ei- ther R-wave angle (RA) or QRS loop rotation angle (LA). A novel rule is proposed for spectral peak selection in respira- tory rate estimation. The suppression of f-waves is accom- plished using signal- and noise-dependent QRS weighted averaging. The performance evaluation embraces real as well as simulated ECG signals acquired from patients with persistent AF; the estimation error of the respiratory rate is determined for both types of signals. Results: Using real ECG signals and reference respiratory signals, rate estima- tion without f-wave suppression resulted in a median error of 0.015 ± 0.021 Hz and 0.019 ± 0.025 Hz for SR and RA, respectively, whereas LA with f-wave suppression resulted in 0.034 ± 0.039 Hz. Using simulated signals, the results also demonstrate that f-wave suppression is superfluous for SR and RA, whereas it is essential for LA. Conclusion: The results show that SR offers the best performance as well as computational simplicity since f-wave suppression is not needed. Significance: The respiratory rate can be robustly estimated from the ECG in the presence of AF.
Details
Authors | |
---|---|
Organisations | |
External organisations |
|
Research areas and keywords | Subject classification (UKÄ) – MANDATORY
Keywords
|
Original language | English |
---|---|
Pages (from-to) | 905-914 |
Number of pages | 10 |
Journal | IEEE Transactions on Biomedical Engineering |
Volume | 67 |
Issue number | 3 |
Publication status | Published - 2020 Feb 19 |
Publication category | Research |
Peer-reviewed | Yes |