Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas

Research output: Contribution to journalArticle

Abstract

The main concern about the technology for the production of hydrogen and transport fuels by biomass gasification is the presence of contaminants (H2S, tars, fly ash, alkali, and heavy metals, ammonia) that are poisonous for the catalysts used for upgrading the biomass-generated gas. The impact of the main contaminants on a Ni/MgAl(O) reforming catalyst was studied in a laboratory environment, by exposing the studied sample to H2S, NH3, K2SO4, KCl, ZnCl2, and a solution derived from biomass fly ash. Lastly, the catalyst was also streamed with a gas produced by a bench-scale downdraft gasifier. The extent of deactivation was examined in the methane steam reforming reaction, under different operational conditions. The main effect of the treatments was a decrease in the bulk surface area and in the metal dispersion. Streaming H2S quickly deactivated the catalyst; however, the activity was recovered by increasing the inlet temperature or by adding O2 to the stream. In further laboratory tests, the performances of the catalyst seemed not to be greatly affected by either the above treatments or by the presence of ammonia in the fed water. The catalyst produced a syngas composition close to that predicted at equilibrium even after being streamed with the biomass-generated gas.

Details

Authors
External organisations
  • External Organization - Unknown
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Chemical Engineering
  • Production Engineering, Human Work Science and Ergonomics

Keywords

  • Biomass gasification, Fly ash, Methane steam reforming, Synthesis gas, Ni catalyst, H2S
Original languageEnglish
Pages (from-to)345-353
JournalBIOMASS & BIOENERGY
Volume32
Issue number4
Publication statusPublished - 2008
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes