Effects of nutrient level on maternal choice and siring success in Cucumis sativus (Cucurbitaceae)

Research output: Contribution to journalArticle

Abstract

Plants have evolved many mechanisms to increase the chance of gene dispersal mainly through pollen and environmental factors play an important role. Understanding the mechanism behind gene dispersal is therefore crucial in the correct evaluation of the use of genetically modified crops for cultivation. In this paper we address the question of weather nutrient availability for the female affects the outcome of pollen competition between two pollen donor cultivars of Cucumis sativus. We do this by carrying out controlled crosses of female plants grown at three different nutrient levels. We separated the effect of a specific donor from the effect of pollen tube growth rate by using reversed crosses of fast and slow pollen. Our results show that female effects on siring ability vary with nutrient level. Pollen with a high pollen tube growth rate was more successful when nutrient availability for the female was high. This could be the result of selection on the female to adjust preference according to environmental circumstances. Pollen tube growth rate was measured under nutrient rich circumstances, thus high performers possessed traits adapted to a nutrient rich situation. Due to trade-off effects, these traits might not be advantageous in poor environments. Instead, individuals adapted to low nutrient circumstances will have a higher pollen tube growth rate. If siring ability varies with the environment of the recipient plant, this means that assessments of gene flow must account for this variation and include both pollen donors and recipient plants subjected to a range of environmental circumstances. In risk assessments of transgenic plants, plants are often kept under experimental, homogenous conditions. If our results also apply to other species, estimates of gene flow under constant conditions may be misleading. Selection on siring ability and female preference have fundamental effects on gene flow and need to be considered in risk assessments of transgenic plants.

Details

Authors
  • Teklehaimanot Haileselassie
  • M Mollel
  • Io Skogsmyr
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Ecology
Original languageEnglish
Pages (from-to)275-288
JournalEvolutionary Ecology
Volume19
Issue number3
Publication statusPublished - 2005
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Plant Ecology and Systematics (Closed 2011) (011004000)