Effects of phospholipids on sphingomyelin hydrolysis induced by intestinal alkaline sphingomyelinase: an in vitro study

Research output: Contribution to journalArticle

Abstract

Digestion of dietary sphingomyelin (SM) is catalyzed by intestinal alkaline sphingomyelinase (SMase) and may have important implications in colonic tumorigenesis. Previous studies demonstrated that the digestion and absorption of dietary SM was slow and incomplete and that the colon was exposed to SM and its hydrolytic products including ceramide. In the present work, we studied the influences of glycerophospholipids and hydrolytic products of phosphatidylcholine (PC; i.e., lyso-PC, fatty acid, diacylglycerol, and phosphorylcholine) on SM hydrolysis induced by purified rat intestinal alkaline SMase in the presence of 10 mM taurocholate. It was found that various phospholipids including PC, phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidic acid (PA) inhibit alkaline SMase activity in a dose-dependent manner, with the degree of inhibition being in the order PA > PS > PI > PC > PE. Similar inhibition was also seen in a buffer of pH 7.4, which is close to the physiologic pH in the middle of the small intestine. When the effects of hydrolytic products of PC were studied, lyso-PC, oleic acid, and 1,2-dioleoyl glycerol also inhibited alkaline SMase activity, whereas phosphorylcholine enhanced SMase activity. However, in the absence of bile salt, acid phospholipids including PA, PS, and PI mildly stimulated alkaline SMase activity whereas PC and PE had no effect. It is concluded that in the presence of bile salts, glycerophospholipids and their hydrolytic products inhibit intestinal alkaline SMase activity. This may contribute to the slow rate of SM digestion in the upper small intestine.

Details

Authors
External organisations
  • Skåne University Hospital
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Pharmacology and Toxicology
Original languageEnglish
Pages (from-to)192-197
Number of pages6
JournalJournal of Nutritional Biochemistry
Volume11
Issue number4
Publication statusPublished - 2000
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes