Electrical and optical evaluation of n-type doping in InxGa(1-x)P nanowires

Research output: Contribution to journalArticle


To harvest the benefits of III-V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense InxGa(1-x)P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H2S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 ×1016 cm-3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H2S as dopant precursors using our parameters is measured to be ∼2 ×1018 cm-3, and ∼1 ×1019 cm-3, respectively (by Hall effect measurements). Hence, both TESn and H2S are suitable precursors for a wide range of n-doping levels in InxGa(1-x)P nanowires needed for optoelectronic devices, grown via the vapor-liquid-solid mode.


External organisations
  • Federal University of Rio de Janeiro
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Nano Technology


  • doping, evaluation, InGaP, nanowire
Original languageEnglish
Article number255701
Issue number25
Publication statusPublished - 2018 Apr 17
Publication categoryResearch