Enabling room-temperature processed highly efficient and stable 2D Ruddlesden-Popper perovskite solar cells with eliminated hysteresis by synergistic exploitation of additives and solvents

Research output: Contribution to journalArticle


Herein we demonstrate the favorable synergistic effect of an NH4Cl additive and DMSO solvent on 2D perovskites that are synthesized at room temperature. Interestingly, we observe the spontaneous formation of 3D phases within either NH4Cl or DMSO treated 2D perovskites, which plays a pivotal role in facilitating charge transport. It is revealed that NH4Cl increases charge carrier lifetime and passivate trap states within the 3D phase while DMSO promotes 2D/3D inter-phase charge transfer. These two competitive processes reach a delicate balance in DMSO and NH4Cl co-treated devices, which deliver a maximum PCE up to 13.41% with excellent air-stability and eliminated hysteresis. This is among the highest values reported for 2D RP perovskite (n = 4) based planar solar cells, particularly via all low-temperature solution fabrication.


External organisations
  • Fudan University
  • Technical University of Denmark
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Materials Chemistry
Original languageEnglish
Pages (from-to)2015-2021
Number of pages7
JournalJournal of Materials Chemistry A
Issue number5
Publication statusPublished - 2019
Publication categoryResearch