Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains

Research output: Contribution to journalArticle

Standard

Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. / Zaldivar, J; Roca, C; Le Foll, C; Hahn-Hägerdal, Bärbel; Olsson, L.

In: Bioresource Technology, Vol. 96, No. 15, 2005, p. 1670-1676.

Research output: Contribution to journalArticle

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains

AU - Zaldivar, J

AU - Roca, C

AU - Le Foll, C

AU - Hahn-Hägerdal, Bärbel

AU - Olsson, L

PY - 2005

Y1 - 2005

N2 - Two industrial effluents, a pre-fermentation effluent and a post-fermentation effluent from a wheat starch production plant, were used as substrates for fuel ethanol production in anaerobic batch cultures using minimal nutritional amendment. The performances of three metabolically engineered xylose-utilizing Saccharomyces cerevisiae strains: TMB 3001 expressing XYL1, XYL2 and XKS1, redox metabolism modulated CPB.CR1 and glucose de-repressed CPB.CR2, as well as a reference strain CEN.PK 113-7D not fermenting xylose, were evaluated. For the recombinant strains a glucose consumption phase preceded the xylose consumption phase. In both effluents, biomass and ethanol production occurred predominantly during the glucose consumption phase, whereas xylitol and glycerol formation were predominant in the xylose consumption phase. Total specific ethanol productivities on glucose were 6-fold higher than on xylose in the pre-fermentation effluent and 15-fold higher than on xylose in the post-fermentation effluent. CPB.CR1 showed impaired growth compared to the two other xylose-utilizing strains, but displayed 18% increased ethanol yield in the post-fermentation effluent. (c) 2005 Elsevier Ltd. All rights reserved.

AB - Two industrial effluents, a pre-fermentation effluent and a post-fermentation effluent from a wheat starch production plant, were used as substrates for fuel ethanol production in anaerobic batch cultures using minimal nutritional amendment. The performances of three metabolically engineered xylose-utilizing Saccharomyces cerevisiae strains: TMB 3001 expressing XYL1, XYL2 and XKS1, redox metabolism modulated CPB.CR1 and glucose de-repressed CPB.CR2, as well as a reference strain CEN.PK 113-7D not fermenting xylose, were evaluated. For the recombinant strains a glucose consumption phase preceded the xylose consumption phase. In both effluents, biomass and ethanol production occurred predominantly during the glucose consumption phase, whereas xylitol and glycerol formation were predominant in the xylose consumption phase. Total specific ethanol productivities on glucose were 6-fold higher than on xylose in the pre-fermentation effluent and 15-fold higher than on xylose in the post-fermentation effluent. CPB.CR1 showed impaired growth compared to the two other xylose-utilizing strains, but displayed 18% increased ethanol yield in the post-fermentation effluent. (c) 2005 Elsevier Ltd. All rights reserved.

U2 - 10.1016/j.biortech.2004.12.034

DO - 10.1016/j.biortech.2004.12.034

M3 - Article

VL - 96

SP - 1670

EP - 1676

JO - Bioresource Technology

T2 - Bioresource Technology

JF - Bioresource Technology

SN - 0960-8524

IS - 15

ER -