Evidence for new catecholamines or related amino acids in some invertebrate neurons

Research output: Contribution to journalArticle

Abstract

In certain sensory neurons of many different invertebrate species, including the sea anemones. Metridium senile and Tealia felina and the crustacean Anemia salina, fluorophores are formed during the course of the fluorescent histochemical technique of Falck-Hillarp. The presumed catecholamine nature of the neuronal fluorogenic compound was investigated by microspectrofluorometry, and the spectral characteristics of the fluorescence in the taxonomically different species was found to be very similar (excitation maximum at 375 nm with a smaller peak or shoulder at 330 nm and sometimes a shoulder in the spectrum at 410 nm; emission maximum at 475 nm). The emission maximum coincides with that of the catecholamines and DOPA (475 nm). The excitation maximum (375 nm) directly after formaldehyde treatment, however, differs from that of the catecholamines and DOPA (410 nm), but is similar to the excitation maximum displayed by these catechol derivatives at acid pH. The spectral characteristics of the fluorophore in the sensory cells might therefore theoretically be explained by an acid pH in the cells. This seems improbable, however, and it is suggested that the phenomenon is due to the presence of unknown catechol derivatives. Analyses of the pH-dependent spectral changes indicate that the presumed catechol derivative in Tealia felina is β-hydroxylated, whereas that in Anemia salina is not.

Details

Authors
Organisations
External organisations
  • Lund University
Research areas and keywords

Keywords

  • Coelenterates, Crustaceans, Microspectrofluorometry
Original languageEnglish
Pages (from-to)525–536
JournalCell and Tissue Research
Volume182
Publication statusPublished - 1977
Publication categoryResearch
Peer-reviewedYes