Evolution of star clusters in arbitrary tidal fields

Research output: Contribution to journalArticle

Abstract

We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in a direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set of reference calculations: heating, dissolution time and structural evolution of model star clusters are all recovered accurately. The tensor method is applicable to arbitrary configurations, including the important situation where the background potential is a strong function of time. This opens up new perspectives in stellar population studies reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for starburst events taking place during the merger of large galaxies. A pilot application to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.

Details

Authors
External organisations
  • University of Strasbourg
  • University of Cambridge
  • Paris Diderot University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Astronomy, Astrophysics and Cosmology

Keywords

  • methods: analytical, methods: numerical, globular clusters: general, open clusters and associations: general, galaxies: star clusters: general, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies
Original languageEnglish
Pages (from-to)759-769
Number of pages11
Journalmnras
Volume418
Issue number2
Publication statusPublished - 2011 Nov 16
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes