Experimental and numerical assessment of the work of fracture in injection-moulded low-density polyethylene

Research output: Contribution to journalArticle

Abstract

The fracture mechanics properties of injection-moulded low-density polyethylene (LDPE) sheets were investigated both experimentally and numerically. The total work of fracture was determined experimentally, by means of fracture mechanics testing of sheets of injection-moulded LDPE with side cracks of different lengths. A multi-specimen method, proposed by Kim and Joe (1987), was employed. The total work of fracture was estimated to 13 kJ/m2. The experiments were simulated numerically using the finite element method. Crack growth was enabled by inclusion of a cohesive zone, and the constitutive response of this zone was governed by a traction-separation law. The local (or essential) work of fracture was estimated through numerical analyses, where the initiation of crack growth was simulated and the outcome was compared to the experimental results. The local (i.e. essential) work of fracture was estimated to 1.7 kJ/m2, which is consistent with previous experimental measurements for the material in question. The total work of fracture, retrieved from the present experiments, agreed well with the far field values of the J-integral in the numerical analyses.

Details

Authors
  • Martin Kroon
  • Eskil Andreasson
  • Viktor Petersson
  • Pär Olsson
Organisations
External organisations
  • Linnaeus University
  • Tetra Pak AB
  • Malmö University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Textile, Rubber and Polymeric Materials

Keywords

  • Polyethylene, Low-density, Fracture, Energy, Cohesive, Injection-moulding, Abaqus, FEM
Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalEngineering Fracture Mechanics
Volume192
Publication statusPublished - 2018
Publication categoryResearch
Peer-reviewedYes