Formation of short-chain Fatty acids, excretion of anthocyanins, and microbial diversity in rats fed blackcurrants, blackberries, and raspberries.

Research output: Contribution to journalArticle

Abstract

Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Nutrition and Dietetics
Original languageEnglish
Article number202534
JournalJournal of Nutrition and Metabolism
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Applied Nutrition and Food Chemistry (011001300), Centre for Analysis and Synthesis (011001266)

Related projects

Patrick Adlercreutz, Irini Lazou Ahrén, Siv Ahrné, Said Alhamimi, Kristina E Andersson, Kristina E Andersson, Anna Månberger, Ulrika Axling, Ulrika Axling, Björn Bergenståhl, Karin Berger, Inger Björck, Camilla Bränning, Fredrik Bäckhed, Yoghatama Cindya Zanzer, Anders Danielsson, Birgitta Danielsson, Eva Degerman, Petr Dejmek, Estera Dey, Anestis Dougkas, Linda Ekström, Ann-Charlotte Eliasson, Christer Fahlgren, Peter Falck, Peter Falck, Tannaz Ghaffarzadegan, Yvonne Granfeldt, Carl Grey, Ulrika Gunnerud, Åsa Håkansson, Åsa Håkansson, Frida Hållenius, Frida Hållenius, Lina Haskå, Lina Haskå, Emilia Heimann, Per Hellstrand, Lovisa Heyman, Cecilia Holm Wallenberg, Ann-Kristin Holmén-Pålbrink, Olle Holst, Tina Immerstrand, Peter Immerzeel, Greta Jakobsdottir, Bengt Jeppsson, Elin Johansson, Maria Johansson, Maria Johansson, Margareta Johansson, Ulla Johansson, Helena Jones, E N Karlsson, Petia Kovatcheva-Datchary, Evelina Kulcinskaja, Mona Landin-Olsson, Caroline Linninge, Ali Marefati, Nittaya Marungruang, Göran Molin, Anne Nilsson, Einar Nilsson, Ulf Nilsson, Margareta Nyman, Eva Ohlson, Crister Olsson, Rickard Öste, Elin Östman, Lisbeth Persson, Stefan Persson, Merichel Plaza, Olena Prykhodko, Karl Radeborg, Marilyn Rayner, Liza Rosén, Margareta Sandahl, Jonna Sandberg, Malin Sjöö, Kerstin Skog, Peter Spégel, Henrik Stålbrand, Olov Sterner, Julia Svensson, Eden Tareke, Juscelino Tovar, Charlotta Turner, Björn Weström, Jie Xu & Yadong Zhong

2007/07/012018/01/31

Project: Research

View all (1)