Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute

Research output: Contribution to journalArticle


Background: Available interventions for preventing fragility hip fractures show limited efficacy. Injection of a biomaterial as bone substitute could increase the fracture strength of the hip. This study aimed to show the feasibility of injecting a calcium sulfate/hydroxyapatite based biomaterial in the femoral neck and to calculate the consequent change in strength using the finite element method. Methods: Five patients were injected with 10 ml calcium sulfate/hydroxyapatite in their femoral neck. Quantitative CT scans were taken before and after injection. Five additional patients with fragility hip fractures were also scanned and the images from the non-fractured contralateral sides were used. Finite element models were created for all proximal femora with and without injection and the models were tested under stance and sideways fall loading until fracture. The change in fracture strength caused by the injection was calculated. Additionally, perturbations in volume, location, and stiffness of the injected material were created to investigate their contribution to the fracture strength increase. Findings: The 10 ml injection succeeded in all patients. Baseline simulations showed theoretical fracture strength increases of 0–9%. Volume increase, change in location and increase in stiffness of the material led to increases in fracture strength of 1–27%, −8-26% and 0–17%, respectively. Altering the location of the injection to a more lateral position and increasing the stiffness of the material led to increases in fracture strength of up to 42%. Interpretation: This study shows that an injection of calcium sulfate/hydroxyapatite is feasible and can theoretically increase the hip's fracture strength.


External organisations
  • Lithuanian University of Health Sciences
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Orthopedics
  • Biomaterials Science


  • Bone strength, Ceramics, Finite element analysis, Hip fracture, Osteoporosis, Prophylactic injection
Original languageEnglish
Pages (from-to)172-178
Number of pages7
JournalClinical Biomechanics
Publication statusPublished - 2019
Publication categoryResearch

Related projects

Joeri Kok, Hanna Isaksson & Lorenzo Grassi

Swedish Research Council


Project: Dissertation

View all (1)