Habitat filtering determines the functional niche occupancy of plant communities worldwide

Research output: Contribution to journalArticle

Abstract

How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale. We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations. As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy. Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy.

Details

Authors
  • Yuanzhi Li
  • Bill Shipley
  • Jodi N. Price
  • Vinícius de L. Dantas
  • Riin Tamme
  • Mark Westoby
  • Andrew Siefert
  • Brandon S. Schamp
  • Marko J. Spasojevic
  • Vincent Jung
  • Daniel C. Laughlin
  • Sarah J. Richardson
  • Yoann Le Bagousse-Pinguet
  • Christian Schöb
  • Antonio Gazol
  • Nicolas Gross
  • Jake Overton
  • Marcus V. Cianciaruso
  • Frédérique Louault
  • Chiho Kamiyama
  • Tohru Nakashizuka
  • Kouki Hikosaka
  • Takehiro Sasaki
  • Masatoshi Katabuchi
  • Cédric Frenette Dussault
  • Stephanie Gaucherand
  • Ning Chen
  • Marie Vandewalle
  • Marco Antônio Batalha
Organisations
External organisations
  • University of Western Australia, Crawley
  • Federal University of Uberlândia
  • University of Tartu
  • University of New South Wales
  • Macquarie University, Sydney
  • University of California, Davis
  • Algoma University
  • University of California, Riverside
  • University of South Bohemia
  • Rey Juan Carlos University
  • University of Zurich
  • INRA National Institute of Agricultural Research
  • United Nations University
  • Tohoku University
  • Chiba University
  • Helmholtz Centre for Environmental Research
  • Université de Sherbrooke
  • Lanzhou University
  • Charles Sturt University
  • University of Rennes I
  • University of Wyoming
  • Landcare Research
  • CSIC Instituto Pirenaico de Ecología (IPE)
  • University of La Rochelle
  • Federal University of Goiás
  • University of Florida
  • National Research Institute Of Science And Technology For Environment And Agriculture (irstea)
  • Federal University of São Carlos
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Ecology

Keywords

  • community assembly, determinants of plant community diversity and structure, habitat filtering, intraspecific trait variability, limiting similarity, niche occupancy, species richness
Original languageEnglish
Pages (from-to)1001-1009
Number of pages9
JournalJournal of Ecology
Volume106
Issue number3
Publication statusPublished - 2018 May 1
Publication categoryResearch
Peer-reviewedYes