Heat transfer enhancement in square ducts with V-shaped ribs of various angles

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceeding


Experimental studies have revealed that both downstream and upstream pointing V-shaped ribs result in better heat transfer enhancement than transverse straight ribs of the same geometry. Secondary flows induced by the angled ribs are believed to be responsible for this higher heat transfer enhancement. Further investigations are needed to understand this. In the present study, the heat and fluid flow in V-shaped-ribbed ducts is numerically simulated by a multi-block 3D solver, which is based on solving the Navier-Stokes and energy equations in conjunction with a low-Reynolds number k-ε turbulence model. The Reynolds turbulent stresses are computed with an explicit algebraic stress model (EASM), while turbulent heat fluxes are calculated with a simple eddy diffusivity model (SED). Firstly, the simulation results of transverse straight ribs are validated against the experimental data, for both velocity and heat transfer coefficients. Then, the results of different rib angles (45° and 90°) and Reynolds number (15,000 - 30,000) are compared to determine the goodness of different rib orientations. Detailed velocity and thermal field results have been used to explain the effects of the inclined ribs and the mechanisms of heat transfer enhancement.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Energy Engineering


  • Explicit algebraic stress model, Simple eddy diffusivity model, Heat transfer enhancement, Square ducts, Secondary flows
Original languageEnglish
Title of host publicationAmerican Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI
PublisherAmerican Society Of Mechanical Engineers (ASME)
Volume3 A
Publication statusPublished - 2002
Publication categoryResearch
EventASME TURBO EXPO 2002: Heat Transfer, Manufacturing Materials and Metallurgy, 2002 - Amsterdam, Netherlands
Duration: 2002 Jun 32002 Jun 6

Publication series

Volume3 A


ConferenceASME TURBO EXPO 2002: Heat Transfer, Manufacturing Materials and Metallurgy, 2002