Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1

Research output: Contribution to journalArticle

Abstract

Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine residue of heparan sulfate (HS) to form 3-O-sulfated HS. The 3-O-sulfated glucosamine residue contributes to two important biological functions of HS: binding to antithrombin and thereby carrying anticoagulant activity, and binding to herpes simplex viral envelope glycoprotein D to serve as an entry receptor for herpes simplex virus 1. A total of five HS 3-O-sulfotransferase isoforms were reported previously. Here we report the isolation and characterization of a novel HS 3-O-sulfotransferase isoform, designated as HS 3-O-sulfotransferase isoform 5 (3-OST-5). 3-OST-5 cDNA was isolated from a human placenta cDNA library and expressed in COS-7 cells. The disaccharide analysis of 3-OST-5-modified HS revealed that 3-OST-5 generated at least three 3-O-sulfated disaccharides as follows: IdoUA2S-AnMan3S, GlcUA-AnMan3S6S, and IdoUA2S-AnMan3S6S. Transfection of the plasmid expressing 3-OST-5 rendered wild type Chinese hamster ovary cells susceptible to the infection by herpes simplex virus 1, suggesting that 3-OST-5-modified HS serves as an entry receptor for herpes simplex virus 1. In addition, 3-OST-5-modified HS bound to herpes simplex viral envelope protein glycoprotein D. Furthermore, we found that 3-OST-5-modified HS also bound to antithrombin, suggesting that 3-OST-5 also produces anticoagulant HS. In summary, our results indicate that a new member of 3-OST family generates both anticoagulant HS and an entry receptor for herpes simplex virus 1. These results provide a new insight regarding the mechanism for the biosynthesis of biologically active HS.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Cell and Molecular Biology
Original languageEnglish
Pages (from-to)37912-37919
JournalJournal of Biological Chemistry
Volume277
Issue number40
Publication statusPublished - 2002
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Cell and Matrix Biology (LUR000002), Matrix biology (013212025)