High-angular-momentum Structures in 64Zn

Research output: Contribution to journalArticle


High-angular-momentum states in Zn-64 were populated in the Ca-40(Si-28,4p) reaction at a beam energy of 122 MeV. Evaporated, light, charged particles were identified by the Microball, while gamma rays were detected using the Gammasphere array. The main focus of this paper is on two strongly coupled, collective bands. The yrast band, which was previously known, has been linked to lower-lying states establishing the excitation energies and angular momenta of in-band states for the first time. The newly identified excited band decays to the yrast band but firm angular-momentum assignments could not be made. In order to interpret these structures cranked-Nilsson-Strutinsky calculations have been performed. The calculations have been extended to account for the distribution of nucleons within a configuration. The yrast collective band is interpreted as based on the pi(f(7/2))(-1)(p(3/2)f(5/2))(2)(g(9/2))(1)nu(p(3/2)f(5/2))(4)(g(9/2))(2) configuration. There are several possible interpretations of the second band but it is difficult to distinguish between the different possibilities.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Sciences
  • Subatomic Physics
Original languageEnglish
Pages (from-to)034330:1-13
Journal Physical Review C: covering nuclear physics
Publication statusPublished - 2004
Publication categoryResearch

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Nuclear Physics (Faculty of Science) (011013004), Mathematical Physics (Faculty of Technology) (011040002)