Ice-Ice Collisions: An Ice Multiplication Process in Atmospheric Clouds

Research output: Contribution to journalArticle

Abstract

Ice in atmospheric clouds undergoes complex physical processes, interacting especially with radiation, which leads to serious impacts on global climate. After their primary production, atmospheric ice crystals multiply extensively by secondary processes. Here, it is shown that a mostly overlooked process of mechanical breakup of ice particles by ice-ice collisions contributes to such observed multiplication. A regime for explosive multiplication is identified in its phase space of ice multiplication efficiency and number concentration of ice particles. Many natural mixed-phase clouds, if they have copious millimeter-sized graupel, fall into this explosive regime. The usual Hallett-Mossop (H-M) process of ice multiplication is shown to dominate the overall ice multiplication when active, as it starts sooner, compared to the breakup ice multiplication process. However, for deep clouds with a cold base temperature where the usual H-M process is inactive, the ice breakup mechanism should play a critical role. Supercooled rain, which may freeze to form graupel directly in only a few minutes, is shown to hasten such ice multiplication by mechanical breakup, with an ice enhancement ratio exceeding 10(4) approximately 20 min after small graupel first appear. The ascent-dependent onset of subsaturation with respect to liquid water during explosive ice multiplication is predicted to determine the eventual ice concentrations.

Details

Authors
External organisations
  • University of Hawaii at Manoa
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Geography
Original languageEnglish
Pages (from-to)322-333
JournalJournal of Atmospheric Sciences
Volume68
Issue number2
Publication statusPublished - 2011
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes